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Summary 
To target a heterogeneous range of video encoding and decoding platforms, it is highly desirable to have a 
video coding framework that can flexibly distributed coding complexity between the video encoder and 
decoder. However, today’s state-of-the-art video compression techniques impose a rigid computational 
complexity distribution between the video encoder and decoder. Specifically, video decoders are very 
simple but encoders are computationally complex as they need to carry out motion estimation and mode 
decision. There have been a number of recent works on video coding using distributed source coding 
(DSC) principles, often abbreviated as distributed video coding. They have shown great potentials in 
enabling flexible complexity distribution between the video encoder and decoder. 

In our previous work on distributed video coding, we have studied two extreme operating points of 
complexity distribution: 

1. Complex encoder with light-weight decoder to achieve maximum compression efficiency given a 
transmission channel condition, and  

2. Light encoder and complex decoder to achieve robustness against transmission packet drops (at 
the cost of reduced compression efficiency).  

In this project, our main goal is to explore the middle ground between these two extreme points. In 
particular, we study the effect of doing coarse motion search at the encoder. By doing coarse motion 
search at the encoder, we would like to achieve two goals: 

1. Reduce the decoding complexity, and 
2. Improve rate-distortion performance. 

As a high-level summary, we investigated the effect of having motion search of various levels at the 
encoder, implemented hierarchical coarse motion search at the encoder, improved the encoder classifier to 
improve rate-distortion performance, and changed the decoding process to make use of the motion search 
result at the encoder. 

We have the following main findings: 

1. Not all sequences can benefit from encoder motion search under the current framework. 
Sequences that can benefit from encoder motion search are the ones with a certain level of motion 
intensity. 

2. For sequences with a certain level of motion intensity, complexity tradeoff between the encoder 
and the decoder can be achieved. When the encoder carries out proper hierarchical motion search, 
the decoding motion search complexity can be reduced by 50-80%, such as in football, Stefan and 
garden sequences. 

3. If the sequence also has smooth motion, up to 1 dB gain in RD performance can be achieved. 
This is because the decoder is now able to find a much better quality predictor (or side 
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information) using the coarse motion vector provided by the encoder. This is not true for 
sequences with irregular motion, such as football sequence. This is because the gain in video 
quality is offset by the much higher rate used to encode motion vector compared to sequences 
with smoother motion. 

4. When there are transmission packet drops, in general, the higher the packet drop rate is, the more 
decoder motion searches are needed and the lower the decoded PSNR will be. For sequences with 
very irregular motion, such as football, the motion vectors become useless when the motion-
compensated predictor is not correctly reconstructed because the motion vector provides very 
little clue on where to find a best predictor two frames ago. This results in drastically increased 
decoding complexity for such sequences as packet drop rates goes up. 
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Introduction 
Current video compression technologies based on motion-compensated predictive coding (MCPC), that are part 
of video coding standards like MPEG and H.264, have a complexity distribution that is somewhat rigid, namely 
a complex encoder and a light decoder.  These systems derive their compression efficiency by using 
computationally intensive motion-estimation at the encoder, the dominant complexity component in the system. 

This architecture made sense when the primary drivers of video compression technology were TV broadcast 
and heavy-server-to-light-client video download. However, with the current push towards a much wider range 
of encoding platforms, ranging from camera-phones to surveillance cameras to heterogeneous UAV platforms, 
video coding systems are being increasingly hampered by the inflexibility of the MPEG architecture, which 
demands computationally complex encoders.  Specifically, the MPEG architecture is not well suited for the 
setup where the encoders is battery-constrained, such as a mobile phone and low-power surveillance wireless 
camera, whereas the decoder is a much more capable Pentium-powered  computing unit or a high-end PC. 

Simultaneously, with the proliferation of wireless networks, there is high demand that video be transmitted 
reliably over channels characterized by severe fades, packet drops, and temporary channel outages.  In 
particular, the Airborne Network will not only have much higher bit error rates as compared to a wired link but 
also highly variable error rate due to distance, fading, and the influence of EMI. These channels severely impair 
the performance of MCPC-based systems like MPEG, which rely on successful transmission of all the motion 
compensated prediction differences between the current frame and the previous frame for effective compression. 
When the previous frame is decoded erroneously (due to channel losses), the encoder and decoder get out of 
synch, creating mismatch or drift between the two ends (see Figure 1).  As MPEG-style architectures rely on a 
large dependency prediction chain for their performance, this drift accumulates for each succeeding frame, 
resulting in potentially catastrophic video quality degradation. 

We aim to design and develop a fundamentally new flexible and unified video coding architecture to: 

• Accommodate a wide range of computational platforms at encoder and decoder; and 
• Design up-front for robustness and in-built immunity to transmission channel noise. 

We propose to move away from the conventional predictive coding framework of MPEG and H.264, and 
instead adopt a new paradigm built on principles of distributed source coding (DSC) from multi-user 
information theory. Distributed source coding based video coding, often abbreviated as distributed video coding, 
has been an active area of research. It has shown great potentials in a wide range of applications, such as low-
complexity encoding, robust real-time video transmission, scalable video and multiple-camera video coding. In 
this work, we focus on two specific benefits of the distributed video coding framework: flexible distribution of 
complexity, and robust real-time video transmission. 

In our previous work on distributed video coding, we have studied two extreme operating points of 
complexity distribution: 
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1. Complex encoder with full motion search and light-weight decoder (Wang, Prabhakaran, & 
Ramchandran, 2006): achieve maximum compression efficiency given a transmission channel 
condition, and  

2. Light encoder with no motion search and complex decoder (Puri & Ramchandran, PRISM: A 
New Robust Video Coding Architecture Based on Distributed Compression Principles, 2002), 
(Puri, Majumdar, & Ramchandran, 2007): achieve robustness against transmission packet drops 
(at the cost of reduced compression efficiency). 

In this project, we aim to explore the middle ground between these two extreme points. In particular, we 
study the effect of doing coarse motion search at the encoder. By doing coarse motion search at the 
encoder, we would like to achieve two goals: 

1. Reduce the decoding complexity, thus achieving complexity re-distribution between the encoder 
and the decoder; 

2. Improve rate-distortion performance. 

                                                                                                4
 



 

Methods, Assumptions, and Procedures 
We first give a brief review of the main results of distributed source coding. We will then review the 
details of the distributed video coding framework that we built upon. Finally we will detail the changes 
we have made to the framework to achieve flexible complexity distribution while maintaining robustness 
during transmission. 

Distributed source coding background 

 

Figure 1: X and Y are correlated sources.  X is the source that the encoder wants to transmit. Y is a 
correlated source (side-information), available only at the decoder. (a) Both encoder and decoder access and 
use Y in order to compress X. (b) Only the decoder accesses Y. Using distributed source coding principles, it 
is possible to compress X as efficiently in this case as in case (a). 

Consider the problems depicted in Figure 1. The goal is to compress and send source X at the lowest rate 
possible. Y is another source that is correlation to X. In Figure 3(a), the side-information Y is available 
only to the decoder, while in Figure 3(b) it is available to both encoder and decoder. From information 
theory (Cover & Thomas) we know that the rate region for the problem of Figure 3(a), when the side-
information is available to both encoder and decoder, is R ≥ H(X|Y), the conditional entropy of X given Y. 
The surprising result of Slepian and Wolf (Slepian & Wolf, 1973) is that the rate region for the problem 
of Figure 3(b), when the side-information is available only to the decoder, is also R ≥ H(X|Y). The overall 
achievable rate region is: 

RX  ≥ H(X|Y) 

RY ≥ H(Y|X) 

RX + RY ≥ H(X,Y) 

At the high level, in a video coding setup, one can imagine X to be the current video frame being encoded 
and Y to be the previous decoded frame. The case where Y is only available at the decoder is precisely the 
case where the previous frame gets corrupted during transmission. Since the encoder does not know 
exactly which packets are corrupted, it has no way of knowing what the decoded frame will look like. The 
Slepian-Wolf theorem tells us that as long as we can characterize the statistical correlation between the 
current frame X and the previous decoded frame Y available at the decoder only, we will still be able to 
correctly reconstruct X at the decoder with an encoding rate that is the same as when Y is available at the 
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encoder. These results were extended to the lossy case by Wyner-Ziv (Wyner & Ziv, 1976) a few years 
later (for the case when Y is known perfectly at the decoder). Again, X and Y are two correlated random 
variables. The problem here is to decode X to its quantized reconstruction X’ given a constraint on the 
distortion measure E[d(X; X’)] when the side information Y is available only at the decoder. In the special 
case where the sources are memoryless Gaussian and when MSE is used as the distortion measure, the 
Wyner-Ziv theorem shows that we can do just as well when Y is only available at the decoder. Further, in 
(Pradhan, Chou, & Ramchandran, 2003) it was proved that for X = Y +N, only the innovations N needs to 
be Gaussian for this result to hold. 

Review of PRISM 
We now review the encoding and decoding processes of our previous work that we built upon. 

Figure 1 shows encoding block diagram of the existing PRISM encoder. For a detailed description of the 
encoding process, please refer to (Puri, Majumdar, & Ramchandran, 2007). The key to its low encoding 
complexity is the zero-motion classifier, which determines the mode of an 8x8 block using its zero-
motion mean square error (MSE). This mode will then dictate how many DCT coefficients are to be 
syndrome-encoded and what syndrome code strength is needed for each of these coefficients. 

To decode each block, the decoder needs to find the right predictor. This search starts from the co-located 
block in the previous frame and spirals outwards. In theory, the decoder can carry out syndrome decoding 
and filters out the wrong predictor using joint typicality check. However, in practice, this will not work 
due to the short block length of the syndrome code. Instead, we use the CRC codes (a hash of the original 
block) to detect whether syndrome decoded result is correct. To summarize, for each candidate predictor, 
the decoder will first syndrome decode and then carry out CRC check. If the check fails, the decoder will 
choose a different predictor. If the check passes, this predictor is a valid one and the decoder stops 
searching (Figure 2). The syndrome decoded result can be used to reconstruct the original block. The 
main complexity at the decoder comes from motion search followed by syndrome decoding. The need for 
CRC also increases the encoding bit rate significantly. 
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Figure 2: Block diagram of previous PRISM encoder 

 

Figure 3: Block diagram of previous PRISM decoder 

Proposed method 
We will now details the changes we have made to the encoder and decoder to enable complexity shift 
between the encoder and decoder and to improve the rate-distortion performance of the system. 

Encoder 
Changes at a glance: 

• Investigated the effectiveness of motion search of various granularities on reducing decoding 
complexity 

• Implemented hierarchical motion search 
• Implemented differential coding (within a slice or packet) of motion vectors 
• Reduced CRC rate from 16 bit per block to 8 bit per block 
• Retrained classifier 
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Details of the changes: 
1. Investigation of the effectiveness of motion search of various granularities on reducing 

decoding complexity 

The first investigation we carried out was to study the effect of having access to accurate motion 
vectors at the decoder. To do this, we carried out full motion search at the encoder and transmitted the 
motion vectors to the decoder. To decode each block, instead of doing a spiral search starting from 
the co-located block in the previous frame, the decoder will now start the spiral search from the 
motion compensated predictor. We assume a clean transmission channel and all the data packets are 
received at the decoder. 

We tested a few standard sequences including Foreman, Football, Flower Garden and Stefan, all in 
CIF format (352x288). We encoded the first 15 frames (1 GOP, I-P-P-P structure) of each sequence 
using I-frame quantization step size 5 and P-frame quantization step size 8. 

Table 1: Study of effect of full encoder motion search on reducing decoding complexity 

Motion 
intensity 

Sequence Encoder search 
method 

Number of encoder 
motion search 

Number of decoder 
motion search 

PSNR 
(dB) 

Low Foreman Zero motion 0 4198 36.04 
Full motion 20004442 4139 36.36 

Medium Flower 
Garden 

Zero motion 0 15784 34.93 
Full motion 20004694 10929 35.55 

High Stefan Zero motion 0 101890 35.47 
Full motion 20005160 20402 35.85 

Football Zero motion 0 35438 35.77 
Full motion 20006491 10028 35.84 

From the results summarized in Table 1, we see that motion vectors can indeed help reduce decoder 
motion search complexity. The amount of reduction highly depends on the motion intensity of the 
video sequence. Intuitively, in low-motion videos, the co-located block is oftentimes the best 
predictor, thus any more motion search at the encoder will not help. For medium to high-motion 
videos, on the other hand, the co-located block is rarely a good predictor for the current block. Hence 
a large number of decoder motion searches are needed to find a qualified predictor. 

2. Implemented hierarchical motion search 

While we would like to shift the motion search operations from the decoder to the encoder, we are 
still interested in keeping the encoder complexity as low as possible without sacrificing decoder 
complexity or decoding quality. Thus we adopt the hierarchical fast motion search algorithm to 
reduce encoder complexity. The hierarchical motion search we adopted consists of the following 
steps. 

Step 1: Motion search of 4-pixel accuracy within ± 16 pixels of the location of the current block. 
Step 2: Motion search of 2-pixel accuracy around the predictor found by Step 1 within ± 8 pixels. 
Step 3: Motion search of 1-pixel accuracy around the predictor found by Step 2 within ± 4 pixels. 
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Step 4: Find the MSE between the current block and the motion compensated predictor found by Step 
3. If MSE < threshold (20000 in current implementation), use this motion vector. Otherwise, discard 
motion vector and carry out 1-pixel accuracy full motion search ± 16 pixels of the location of the 
current block. 

Note that this is a simplified version of the more sophisticated 3-step motion search, which requires 
filtering the original picture and subsample twice to get QCIF and QQCIF version of the original 
sequence (assuming CIF sequence). It terms of the total number of motion searches needed at the 
encoder, this simplified version is not as good as the more sophisticated one. But it does not require 
sampling or sub-sampling. 

Table 2 compares the number of encoder motion search between the hierarchical search and the full 
search. We see that hierarchical search takes only a fraction of the complexity that full motion search 
requires. But at the decoder, the number of decoder motion searches needed and the decoded PSNR 
are barely changed, indicating the quality of the predictors found by the hierarchical search is almost 
as good as the full search. 

An interesting finding is that Step 4 is crucial in this hierarchical motion search. To flexibly shift 
complexity between the encoder and the decoder, we would like to reduce the encoder motion search 
complexity and study the effect at the decoder. Ideally, we would like to see increased decoder 
complexity but not higher complexity than when there is no motion search at the encoder. 

Given the hierarchical motion search procedures, the seemingly most logical approach is to eliminate 
steps backwards. However, an interesting and surprising observation is that Step 5 (the refinement 
step) is actually crucial to performance. The reason is that fast motion search may occasionally 
completely miss a good predictor and mistreat an outlier as a reasonable predictor. For sequences 
with intensive and unpredictable motion, there are more outliers. When this happens, the best 
predictors are typically quite far away from the outlier and up to more than 1000 decoder motion 
searches are needed to correct a single block. The refinement step works perfectly to identify these 
outliers and eliminate them. The following table represents this phenomenon. Here we will focus on 
the medium to high motion sequences as motion searches are more important to them. We can see 
that for Stefan and Football sequences, if the refinement step is skipped, the number of decoder 
motion searches needed is actually even higher than when no motion vectors are provided at the 
decoder at all. On the other hand, Flower Garden sequence has very smooth and predictable motion 
due to smooth camera panning therefore there aren’t many outliers. As a result, even though Flower 
Garden sequence has a certain level of motion intensity, hierarchical motion search works quite well 
even without the refinement step. 

Table 2: Study of effectiveness of motion estimation of various granularities in reducing decoding complexity 

Motion 
intensity 

Sequence Encoder search 
method 

Number of 
encoder motion 
search 

Number of 
decoder 
motion search 

PSNR 
(dB) 
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High Stefan Zero motion 0 101890 35.47 
Hierarchical without 
refinement step 

3108807 127991 35.76 

Hierarchical 4076492 20742 35.84 
Full search 20005160 20402 35.85 

Football Zero motion 0 35438 35.77 
Hierarchical without 
refinement step 

3119210 40903 35.77 

Hierarchical 5119268 10076 35.83 
Full search 20006491 10028 35.84 

Medium Flower 
Garden 

Zero motion 0 15784 34.93 
Hierarchical without 
refinement step 

3090263 11588 35.55 

Hierarchical 4016450 10929 35.55 
Full search 20004694 10929 35.55 

 
3. Implemented differential coding (within a slice or packet) of motion vectors 

In the current implementation, the predictor motion vector is that of the block to the left of the current 
block. If the block to the left is INTRA or SKIP-coded, the motion vector of that block is assumed to 
be zero. If a block is the left-most block of the row, the original value is stored. The Huffman table 
used for motion vectors in H.263 is used for the entropy coding of the differential motion vectors. 

 
4. Reduced CRC rate from 16 bit per block to 8 bit per block 

Due to the presence of the motion vector, the decoder now has much better knowledge on where to 
find an appropriate predictor (side information). The decoder can typically find a good predictor 
within a couple searches while without motion vectors, the decoder sometimes needs thousands of 
searches before finding a good predictor. This means that with motion vectors, the number of error 
patterns the decoder could encounter due to decoding off of a bad predictor is much limited. As a 
result, a much weaker CRC is needed. We find that 8-bit CRC suffice through experiments. 

Note: a 16-bit CRC can identify 216 errors while an 8-bit CRC can only identify 28 errors. 

5. Retrained classifier 

The classifier contains the following information 

• Threshold for MSE (in dB) between current block and reference block to determine which 
class the current block belongs to. 

• For each class 
o The number of coefficients to syndrome encode. 
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o The mean and variance of each coefficient that is to be syndrome-encoded (Note: The 
variance will determine the strength of the channel code needed for the coefficient. 
The mean is used only at the decoder to get estimation gain.) 

In our previous work, the MSE between the current block and the co-located block in the previous 
frame is computed. We call this zero-motion MSE. The classifier was also trained offline to threshold 
the zero-motion MSE. In this work, the MSE between the current block and the motion-compensated 
block in the previous frame is computed, which we call motion-compensated MSE. Clearly, a zero-
motion MSE and a motion-compensated MSE of the same value do not have the same meaning, i.e. 
the best predictor of a block whose motion-compensated MSE is the same as another block’s zero-
motion MSE is likely to be worse than the best predictor of that block. This calls for retraining the 
classifier with motion compensated MSE. The training was done in the following way: 

• For each block, take DCT of both the current block and the motion-compensated predictor 
block. For each DCT coefficient, find the difference between the current block and the 
predictor block, which we term DFD (displaced frame difference). 

• For each block, record its motion-compensated MSE . Then for each DCT coefficient of this 
block, record the value of each coefficient and the value of DFD. 

• Plot the histogram of motion-compensated MSE (in dB). 
• Divide the range of MSE values into 16 regions/classes (one SKIP, one INTRA, 14 PRISM 

modes), i.e. 15 thresholds. The lowest threshold (in dB value) is the INTRA threshold while 
the highest threshold is the SKIP threshold. These two values are set based on heuristics. The 
other 13 thresholds are set such that the number of blocks in each of the 14 classes is roughly 
equalized. 

• Group blocks by their class. For each class of blocks, find the mean and variance of each 
DCT coefficient and DFD. 
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Decoder 
Changes at a glance: 

1. Implemented motion vector differential decoding 
2. Implemented motion search centered around appropriately motion-compensated predictor instead 

of co-located previous block 
 
Details of the changes: 

1. Implemented motion vector differential decoding 

This part is straight-forward. The decoding is done corresponding to the encoding. 

 
2. Implemented motion search centered around appropriately motion-compensated predictor 

instead of co-located previous block 

When there are no transmission packet drops, this is relatively straight-forward. For the decoder 
motion search, the search spirals and will start at the motion-compensated predictor in the previous 
frame. 

However, when there are transmission packet drops, this needs to be modified depending on the error 
concealment strategy used. This is because when there are packet drops in the previous frame and the 
motion-compensated predictor is part of the missing packet, how the missing blocks are filled up will 
determine where best to start the motion search. In the current implementation, if a packet (a slice of 
16x16 macroblocks) is lost, the co-located slice from the previous frame is pasted for error 
concealment. Using this concealment strategy, it is no longer a good idea to start the decoder motion 
search at the motion-compensated predictor if that predictor was part of a lost packet because the 
block at that location was pasted from 2 frames ago and is oftentimes not a good predictor unless the 
motion for the current block is zero. To better understand this, let us consider the example in Figure 3. 
Clearly in this case, if the decoder search still starts at the position pointed to by the motion vector, i.e. 
two blocks to the left, it will not find the best predictor right away. In fact, using spiral search, it will 
take a large number of searches before reaching the best predictor. To solve this problem, the decoder 
needs to track the decoding status of each block, i.e. whether it was lost, correctly reconstructed, or 
failed to decode. When the decoder starts searching, it will first look at the status of the motion-
compensated predictor. If it’s correctly reconstructed1, then the decoder motion search will start from 
there. Otherwise, some modifications are needed. In the current implementation, the decoder will 

                                                            
1 A block is considered correctly reconstructed if 1) it is an INTRA block and is received, or 2) it is a PRISM block and 
it was received and successfully decoded, or 3) it is a SKIP block and the block it is pasting from was correctly 
reconstructed. 
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interpolate the motion vector and start motion search from the new motion-compensated predictor in 
the previous reconstructed frame2. 

One can see that if the concealment strategy is different, this method will need to be modified. For 
instance, if when filling in the missing blocks, motion vectors of neighboring blocks that are received 
are used to paste in motion-compensated blocks, we would not need to interpolate the motion vectors. 
However, this method is only effective when the lost packets do not contain neighboring slices. For a 
bursty channel where a few packets often get lost at the same time, this method may not work well. 

 
Original Frame n-2   Reconstructed Frame n-2 
                      
                      
                      
                      
                      
Original Frame n-1   Reconstructed Frame n-1 
                      
                      
                      
                      
                      
Original Frame n    
          
          
          
          
          

Current block

Packet dropped 

Paste

Figure 4: Illustration of proper decoder motion search 
 

 

 

 

                                                            
2 Ideally, the decoder should search in Frame n‐2 using the interpolated motion vectors. But this requires a an 
additional frame buffer. The current strategy works well if horizontal motion dominates, which is typically the case. 
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Results and Discussion 
Based on our study, we have the following main findings: 

• Not all sequences can benefit from encoder motion search under the current framework. 
Sequences that can benefit from encoder motion search are the ones with a certain level of motion 
intensity. 

• For sequences with a certain level of motion intensity, complexity tradeoff between the encoder 
and the decoder can be achieved. When the encoder carries out hierarchical motion search, the 
decoding motion search complexity can be reduced by 50-80%, such as in football, Stefan and 
garden sequences. 

• If the sequence also has smooth motion, up to 1 dB gain in RD performance can be achieved due 
to being able to find a much better quality predictor (or side information) at the decoder using 
motion vector. This is not true for sequences with irregular motion, such as football sequence, 
because the rate used to encode motion vector is much higher than that of the sequences with 
smoother motion. 

• When there are transmission packet drops, in general, the higher the packet drop rate, the more 
decoder motion searches are needed and the lower the PSNR. For sequences with very irregular 
motion, such as football, the motion vectors become useless when the motion-compensated 
predictor is not correctly reconstructed because the motion vector provides very little clue on 
where to find a best predictor two frames ago. This results in drastically increased decoding 
complexity for such sequences as packet drop rates goes up. 
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1. Results using the first 30 frames of standard sequences with no transmission packet drops 
a. Foreman sequence: 30 frames, 2 GOPs 

QP Size 
(KB) 

PSNR Number of encoder 
motion search 

Number of decoder 
motion search 

8 254738 35.82 0 5512 
 262178 36.05 10116948 6855 
12 184143 33.65 0 3258 
 192796 33.79 10116948 3986 
16 147722 32.02 0 1982 
 152726 32.12 10116948 2398 

 

RD curve 
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b. Stefan sequence: 30 frames, 2 GOPs 

QP Size 
(KB) 

PSNR Number of encoder 
motion search 

Number of decoder 
motion search 

8 523302 35.34 0 126519 
 524045 36.29 15728564 17985 
12 379618 32.47 0 76451 
 392499 33.36 15728564 14984 
16 296295 30.25 0 44391 
 312183 31.13 15728564 12213 

 

RD curve 
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c. Football sequence: 30 frames, 2 GOPs 

QP Size 
(KB) 

PSNR Number of encoder 
motion search 

Number of decoder 
motion search 

8 339435 36.17 0 27844 
 347724 36.39 17334404 5107 
12 243739 33.74 0 24365 
 251231 33.94 17334404 3419 
16 191427 32.06 0 10882 
 198385 32.24 17334404 2589 

 

RD curve 
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d. Garden sequence: 30 frames, 2 GOPs 

QP Size 
(KB) 

PSNR Number of encoder 
motion search 

Number of decoder 
motion search 

8 728193 34.92 0 34296 
 708378 35.65 18666260 17890 
12 527708 31.61 0 24378 
 528170 32.54 18666260 15710 
16 405896 29.28 0 17641 
 418198 30.26 18666260 13756 

 

RD curve 

 

  18 
 



2. Results using first 30 frames of standard sequences with transmission packet drops 

a. Stefan sequence 
 Packet drop rates (%) 0 2.58 4.17 5.75 7.74 9.72 
Zero encoder 
motion search 

Number of decoder 
searches 126519 128601 132144 166212 328967 366458 
PSNR 35.34 33.42 32.84 31.64 30.26 28.83 

Coarse encoder 
motion search 

Number of decoder 
searches 17985 62641 76634 101331 130414 175897 
PSNR 36.29 33.11 32.31 30.55 28.96 27.69 

 
b. Flower garden sequence 

 Packet drop rates (%) 0 2.58 4.17 5.75 7.74 9.72 
Zero encoder 
motion search 

Number of decoder 
searches 34296 34842 35753 36690 38852 40514 
PSNR 34.92 33.61 32.5 31.54 30.43 29.8 

Coarse encoder 
motion search 

Number of decoder 
searches 17890 18201 18242 18369 37522 37761 
PSNR 35.65 34.19 33.01 31.99 30.22 29.59 

 
c. Tempete sequence 

 Packet drop rates (%) 0 2.58 4.17 5.75 7.74 9.72 
Zero encoder 
motion search 

Number of decoder 
searches 20945 49266 104603 123195 268678 330238 
PSNR 34.38 33.62 33.09 32.44 31.98 31.22 

Coarse encoder 
motion search 

Number of decoder 
searches 16105 17374 17091 16602 20706 22935 
PSNR 34.44 33.69 33.27 32.63 32.14 31.38 

 
d. Football sequence 

 Packet drop rates (%) 0 2.58 4.17 5.75 7.74 9.72 
Zero encoder 
motion search 

Number of decoder 
searches 27844 34913 36773 45272 47478 49171 
PSNR 36.17 34.23 32.65 31.36 29.25 28.13 

Coarse encoder 
motion search 

Number of decoder 
searches 5107 16091 34724 47664 72493 86793 
PSNR 36.38 34.29 32.49 31.14 28.92 27.81 
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Conclusions 
In this project, we investigated the possibility of flexibly distribute computational complexity between the 
video encoder and decoder. We propose to carry out coarse motion search at the encoder in the distributed 
video coding frame. The goal is to reduce decoding complexity and to improve rate-distortion 
performance without sacrificing robustness to transmission packet loss. 

We have the following main findings: 

1. Not all sequences can benefit from encoder motion search under the current framework. 
Sequences that can benefit from encoder motion search are the ones with a certain level of motion 
intensity. 

2. For sequences with a certain level of motion intensity, complexity tradeoff between the encoder 
and the decoder can be achieved. When the encoder carries out proper hierarchical motion search, 
the decoding motion search complexity can be reduced by 50-80%, such as in football, Stefan and 
garden sequences. 

3. If the sequence also has smooth motion, up to 1 dB gain in RD performance can be achieved. 
This is because the decoder is now able to find a much better quality predictor (or side 
information) using the coarse motion vector provided by the encoder. This is not true for 
sequences with irregular motion, such as football sequence. This is because the gain in video 
quality is offset by the much higher rate used to encode motion vector compared to sequences 
with smoother motion. 

4. When there are transmission packet drops, in general, the higher the packet drop rate is, the more 
decoder motion searches are needed and the lower the decoded PSNR will be. Decoder motion 
search needs to be modified significantly to make proper use of the coarse motion vectors. For 
sequences with very irregular motion, such as football, the motion vectors become useless when 
the motion-compensated predictor is not correctly reconstructed because the motion vector 
provides very little clue on where to find a best predictor two frames ago. This results in 
drastically increased decoding complexity for such sequences as packet drop rates goes up.
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List(s) of Symbols, Abbreviations, and Acronyms 
• MCPC: motion-compensated predictive coding 
• DSC: distributed source coding 
• RD: rate-distortion 
• PRISM: name of the distributed video coding codec we built upon 
• PSNR: peak signal-to-noise ratio 
• H(X): entropy of X 
• H(X|Y): conditional entropy of X given Y 
• H(X,Y): joint entropy of X and Y 
• E[·]: expected value 
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